\(\int (a+a \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [97]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 184 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^{5/2} (19 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^3 (27 A-56 C) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (21 A-8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

1/4*a^(5/2)*(19*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d-1/12*a^3*(27*A-56*C)*sin(d*x+c)/d/
(a+a*cos(d*x+c))^(1/2)-1/12*a^2*(21*A-8*C)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d+5/4*a*A*(a+a*cos(d*x+c))^(3/2)*
tan(d*x+c)/d+1/2*A*(a+a*cos(d*x+c))^(5/2)*sec(d*x+c)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3123, 3054, 3055, 3060, 2852, 212} \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^{5/2} (19 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}-\frac {a^3 (27 A-56 C) \sin (c+d x)}{12 d \sqrt {a \cos (c+d x)+a}}-\frac {a^2 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{12 d}+\frac {5 a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{4 d}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d} \]

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(a^(5/2)*(19*A + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) - (a^3*(27*A - 56*C)*Sin
[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x]]) - (a^2*(21*A - 8*C)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(12*d) +
 (5*a*A*(a + a*Cos[c + d*x])^(3/2)*Tan[c + d*x])/(4*d) + (A*(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]*Tan[c + d*
x])/(2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int (a+a \cos (c+d x))^{5/2} \left (\frac {5 a A}{2}-\frac {1}{2} a (3 A-4 C) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx}{2 a} \\ & = \frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int (a+a \cos (c+d x))^{3/2} \left (\frac {1}{4} a^2 (19 A+8 C)-\frac {1}{4} a^2 (21 A-8 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{2 a} \\ & = -\frac {a^2 (21 A-8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int \sqrt {a+a \cos (c+d x)} \left (\frac {3}{8} a^3 (19 A+8 C)-\frac {1}{8} a^3 (27 A-56 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{3 a} \\ & = -\frac {a^3 (27 A-56 C) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (21 A-8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{8} \left (a^2 (19 A+8 C)\right ) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = -\frac {a^3 (27 A-56 C) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (21 A-8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}-\frac {\left (a^3 (19 A+8 C)\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d} \\ & = \frac {a^{5/2} (19 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^3 (27 A-56 C) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (21 A-8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.74 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (6 \sqrt {2} (19 A+8 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^2(c+d x)+4 (6 A+32 C+(33 A+6 C) \cos (c+d x)+32 C \cos (2 (c+d x))+2 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(6*Sqrt[2]*(19*A + 8*C)*ArcTanh[Sqrt[2]*Sin[(c
 + d*x)/2]]*Cos[c + d*x]^2 + 4*(6*A + 32*C + (33*A + 6*C)*Cos[c + d*x] + 32*C*Cos[2*(c + d*x)] + 2*C*Cos[3*(c
+ d*x)])*Sin[(c + d*x)/2]))/(48*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(801\) vs. \(2(160)=320\).

Time = 62.57 (sec) , antiderivative size = 802, normalized size of antiderivative = 4.36

method result size
parts \(\text {Expression too large to display}\) \(802\)
default \(\text {Expression too large to display}\) \(1064\)

[In]

int((a+cos(d*x+c)*a)^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

1/2*A*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(76*a*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^
(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^
(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^
4+(-44*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-76*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/
2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-76*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2
^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+26*2^
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+19*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2
*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+19*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*
cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/(2
*cos(1/2*d*x+1/2*c)-2^(1/2))^2/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+1/6*C*a^(3/2)*cos(1/2*d*x+1
/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2+3*2^(1/2)
*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1
/2)+2*a))*a+3*2^(1/2)*ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*
x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+36*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos
(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.16 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {3 \, {\left ({\left (19 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + {\left (19 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (8 \, C a^{2} \cos \left (d x + c\right )^{3} + 64 \, C a^{2} \cos \left (d x + c\right )^{2} + 33 \, A a^{2} \cos \left (d x + c\right ) + 6 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/48*(3*((19*A + 8*C)*a^2*cos(d*x + c)^3 + (19*A + 8*C)*a^2*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*
a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 +
 cos(d*x + c)^2)) + 4*(8*C*a^2*cos(d*x + c)^3 + 64*C*a^2*cos(d*x + c)^2 + 33*A*a^2*cos(d*x + c) + 6*A*a^2)*sqr
t(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3668 vs. \(2 (160) = 320\).

Time = 3.44 (sec) , antiderivative size = 3668, normalized size of antiderivative = 19.93 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/16*(150*sqrt(2)*a^2*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 154*sqrt(2)*a^2*cos(5/2*d*x + 5/2*c)*sin(2*d*x
+ 2*c) - 28*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 44*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) - (3*sqrt(2)*a^2*sin(7/2*d*
x + 7/2*c) + 5*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) - 17*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) - 55*sqrt(2)*a^2*sin(1/2
*d*x + 1/2*c) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c
) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si
n(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos
(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*
c) + 2))*cos(4*d*x + 4*c)^2 + 4*(17*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 55*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) - 1
9*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin
(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*
x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c
)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*
x + 2*c)^2 - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) +
 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt
(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1
/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/
2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
+ 2) - (3*sqrt(2)*a^2*sin(7/2*d*x + 7/2*c) + 5*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) - 17*sqrt(2)*a^2*sin(3/2*d*x +
 3/2*c) - 55*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log
(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x
+ 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c
) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(4*d*x + 4*c)^2 + 4*(17*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 55*sqrt
(2)*a^2*sin(1/2*d*x + 1/2*c) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(
1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x +
1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 1
9*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin
(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 - 3*(sqrt(2)*a^2*sin(4*d*x + 4*c) + 2*sqrt(2)*a^2*sin(2*d*x + 2*c))
*cos(15/2*d*x + 15/2*c) - 5*(sqrt(2)*a^2*sin(4*d*x + 4*c) + 2*sqrt(2)*a^2*sin(2*d*x + 2*c))*cos(13/2*d*x + 13/
2*c) + 11*(sqrt(2)*a^2*sin(4*d*x + 4*c) + 2*sqrt(2)*a^2*sin(2*d*x + 2*c))*cos(11/2*d*x + 11/2*c) + 45*(sqrt(2)
*a^2*sin(4*d*x + 4*c) + 2*sqrt(2)*a^2*sin(2*d*x + 2*c))*cos(9/2*d*x + 9/2*c) - (11*sqrt(2)*a^2*sin(3/2*d*x + 3
/2*c) - 99*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + 38*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 +
 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 38*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 +
2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 38*a^2*log(2
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x +
1/2*c) + 2) - 38*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
- 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 4*(17*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 55*sqrt(2)*a^2*sin(1/2*d*x +
1/2*c) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*s
qrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*
cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d
*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*
x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
)*cos(2*d*x + 2*c) + 3*(4*sqrt(2)*a^2*cos(2*d*x + 2*c) + 27*sqrt(2)*a^2)*sin(7/2*d*x + 7/2*c) + (20*sqrt(2)*a^
2*cos(2*d*x + 2*c) + 87*sqrt(2)*a^2)*sin(5/2*d*x + 5/2*c))*cos(4*d*x + 4*c) - 2*(11*sqrt(2)*a^2*sin(3/2*d*x +
3/2*c) - 99*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + 38*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 38*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 +
 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 38*a^2*log(
2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x +
 1/2*c) + 2) - 38*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
 - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c) + 3*(sqrt(2)*a^2*cos(4*d*x + 4*c) + 2*sqrt(2)*a^2*cos
(2*d*x + 2*c) + sqrt(2)*a^2)*sin(15/2*d*x + 15/2*c) + 5*(sqrt(2)*a^2*cos(4*d*x + 4*c) + 2*sqrt(2)*a^2*cos(2*d*
x + 2*c) + sqrt(2)*a^2)*sin(13/2*d*x + 13/2*c) - 11*(sqrt(2)*a^2*cos(4*d*x + 4*c) + 2*sqrt(2)*a^2*cos(2*d*x +
2*c) + sqrt(2)*a^2)*sin(11/2*d*x + 11/2*c) - 45*(sqrt(2)*a^2*cos(4*d*x + 4*c) + 2*sqrt(2)*a^2*cos(2*d*x + 2*c)
 + sqrt(2)*a^2)*sin(9/2*d*x + 9/2*c) - (12*sqrt(2)*a^2*sin(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 20*sqrt(2)*a^2*
sin(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 75*sqrt(2)*a^2*cos(7/2*d*x + 7/2*c) - 77*sqrt(2)*a^2*cos(5/2*d*x + 5/2
*c) - 45*sqrt(2)*a^2*cos(3/2*d*x + 3/2*c) - 11*sqrt(2)*a^2*cos(1/2*d*x + 1/2*c) - 4*(17*sqrt(2)*a^2*sin(3/2*d*
x + 3/2*c) + 55*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c
)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d
*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/
2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c))*sin(4*d*x + 4*c) - 6*(2*sqrt(2)*a^2*cos(2*d*x +
2*c)^2 + 2*sqrt(2)*a^2*sin(2*d*x + 2*c)^2 + 27*sqrt(2)*a^2*cos(2*d*x + 2*c) + 13*sqrt(2)*a^2)*sin(7/2*d*x + 7/
2*c) - 2*(10*sqrt(2)*a^2*cos(2*d*x + 2*c)^2 + 10*sqrt(2)*a^2*sin(2*d*x + 2*c)^2 + 87*sqrt(2)*a^2*cos(2*d*x + 2
*c) + 41*sqrt(2)*a^2)*sin(5/2*d*x + 5/2*c) + 2*(45*sqrt(2)*a^2*cos(3/2*d*x + 3/2*c) + 11*sqrt(2)*a^2*cos(1/2*d
*x + 1/2*c))*sin(2*d*x + 2*c))*A*sqrt(a)/((2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 +
4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos
(2*d*x + 2*c) + 1)*d)

Giac [A] (verification not implemented)

none

Time = 1.51 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.16 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (64 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 288 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, \sqrt {2} {\left (19 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 8 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {12 \, {\left (22 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 13 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{48 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

-1/48*sqrt(2)*(64*C*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 288*C*a^2*sgn(cos(1/2*d*x + 1/2*c))
*sin(1/2*d*x + 1/2*c) + 3*sqrt(2)*(19*A*a^2*sgn(cos(1/2*d*x + 1/2*c)) + 8*C*a^2*sgn(cos(1/2*d*x + 1/2*c)))*log
(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))) + 12*(22*A*a^2*sgn(cos(1/2*
d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 13*A*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x
 + 1/2*c)^2 - 1)^2)*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^3,x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^3, x)